Compute the Jordan canonical form for a given matrix

Let A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} and B = \begin{bmatrix} 5 & 2 & -8 & -8 \\ -6 & -3 & 8 & 8 \\ -3 & -1 & 3 & 4 \\ 3 & 1 & -4 & -5 \end{bmatrix}. For each of A and B, compute the characteristic polynomial and the Jordan canonical form.


Let P = \dfrac{-1}{4} \begin{bmatrix} 1 & 1 & 1 & -3 \\ 1 & 1 & -3 & 1 \\ 1 & -3 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} and Q = \dfrac{1}{12} \begin{bmatrix} -3 & -1 & 4 & 8 \\ 3 & 1 & 0 & -4 \\ 6 & 6 & -8 & -8 \\ 9 & 3 & -12 & -12 \end{bmatrix}. Evidently, we have P^{-1}AP = Q^{-1}BQ = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}, which is clearly in Jordan canonical form. In particular, the characteristic polynomial of A and B is c(x) = (x+1)^3(x-3).

[Computations performed with WolframAlpha; see here and here.]

Advertisements
Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: