Prove that two matrices are similar

Let A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -4 & -1 & -4 & 0 \\ 2 & 1 & 3 & 0 \\ -2 & 4 & 9 & 1 \end{bmatrix} and B = \begin{bmatrix} 5 & 0 & -4 & -7 \\ 3 & -8 & 15 & -13 \\ 2 & -4 & 7 & -7 \\ 1 & 2 & -5 & 1 \end{bmatrix}. Prove that A and B are similar.


Let P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ -2 & 4 & 9 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} and Q = \begin{bmatrix} 0 & 2 & -3 & 2 \\ 2 & -2 & 2 & -5 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & -2 & 1 \end{bmatrix}. Evidently, P^{-1}AP = Q^{-1}BQ = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}. In particular, A and B are similar.

(Computations performed with WolframAlpha; see here and here.)

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: