Compute the Jordan canonical form of a given matrix

Compute the Jordan canonical form of the matrix A = \begin{bmatrix} 3 & 0 & -2 & -3 \\ 4 & -8 & 14 & -15 \\ 2 & -4 & 7 & -7 \\ 0 & 2 & -4 & 3 \end{bmatrix}. (Over \mathbb{Q}.)


Let P = \begin{bmatrix} 0 & -1 & 2 & -1/2 \\ 0 & 2 & -3 & 2 \\ 2 & -2 & 2 & -5 \\ 0 & 1 & -2 & 1 \end{bmatrix}. Evidently, P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} is in Jordan canonical form. (Computations performed with WolframAlpha; see here.)

Advertisements
Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: