Solve a given system of linear equations over QQ

Find the nonzero solutions of the following system over \mathbb{Q}.

\left\{ \begin{array}{rcrcrcrcl} x_1 & + & 2x_2 & + & 3x_3 & + & 4x_4 & = & 0 \\ 5x_1 & & & + & x_3 & + & 8x_4 & = & 0 \\ 2x_1 & + & 3x_2 & + & 7x_3 & & & = & 0 \end{array} \right.

Let A = \left[ \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & 0 & 1 & 8 \\ 2 & 3 & 7 & 0 \end{array} \right].

Using Gauss-Jordan elimination, we see that the reduced row echelon form of A is B = \left[ \begin{array}{cccc} 1 & 0 & 0 & 13/6 \\ 0 & 1 & 0 & 31/6 \\ 0 & 0 & 1 & -17/6 \end{array} \right]. In particular, note that AX = 0 and BX = 0 have the same solution set. So x_4 may be chosen arbitrarily, and then x_1 = \frac{-13}{6}x_4, x_2 = \frac{-31}{6}x_4, and x_3 = \frac{17}{6}x_4.

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: