## A group of order 24 with no elements of order 6 is isomorphic to Sym(4)

Show that a group of order 24 with no element of order 6 is isomorphic to $S_4$.

Note that $24 = 2^3 \cdot 3$, so that Sylow’s Theorem forces $n_2(G) \in \{1,3\}$ and $n_3(G) \in \{1,4\}$.

Suppose $n_3(G) = 1$. If $n_2(G) = 1$, then by the recognition theorem for direct products, $G \cong P_2 \times P_3$, where $P_2$ and $P_3$ are Sylow 2- and 3-subgroups of $G$, respectively. By Cauchy, there exist elements $x \in P_2$ and $y \in P_3$ of order 2 and 3, so that $xy$ has order 6, a contradiction. Suppose now that $n_2(G) = 3$. Since $n_2(G) \not\equiv 1$ mod 4, there exist $P_2,Q_2 \in \mathsf{Syl}_2(G)$ such that $P_2 \cap Q_2$ is nontrivial and its normalizer has order $2^3 \cdot 3$, by a previous theorem. Thus $P_2 \cap Q_2 \leq G$ is normal. Note that $|P_2 \cap Q_2|$ is either 2 or 4.

Suppose $|P_2 \cap Q_2| = 4$. Then at most $7 + 3 + 7$ nonidentity elements of $G$ are contained in Sylow 2-subgroups, and 3 elements are contained in Sylow 3-subgroups. This leaves 4 elements not of prime power order, one of which must have order 6- a contradiction.

Suppose now that $|P_2 \cap Q_2| = 2$. By the N/C Theorem, $G/C_G(P_2 \cap Q_2) \leq \mathsf{Aut}(P_2 \cap Q_2) \cong 1$, so that $P_2 \cap Q_2$ is central in $G$. By Cauchy, there exist elements $x \in P_2 \cap Q_2$ and $y \in G$ of order 2 and 3, so that $xy$ has order 6, a contradiction.

Thus we may assume $n_3(G) = 4$. Let $P_3 \leq G$ be a Sylow 3-subgroup and let $N = N_G(P_3)$. The action of $G$ on $G/N$ yields a permutation representation $G \rightarrow S_4$ whose kernel $K$ is contained in $N$. Recall that normalizers of Sylow subgroups are self normalizing, so that $N$ is not normal in $G$. Moreover, we have $|N| = 6$. We know from the classification of groups of order 6 that $N$ is isomorphic to either $Z_6$ or $D_6$; however, in the first case we have an element of order 6, a contradiction. Thus $N \cong D_6$. We know also that the normal subgroups of $D_6$ have order 1, 3, or 6. If $|K| = 6$, then $K = N$ is normal in $G$, a contradiction. If $|K| = 3$, then by the N/C theorem we have $G/C_G(K) \leq \mathsf{Aut}(Z_3) \cong Z_2$. In particular, $C_G(K)$ contains an element of order 2, so that $G$ contains an element of order 6, a contradiction.

Thus $K = 1$, and in fact $G \leq S_4$. Since $|G| = |S_4| = 24$ is finite, $G \cong S_4$.

• mcoulont  On November 8, 2010 at 6:06 pm

Why are P2 and Q2 abelian ?

• nbloomf  On November 9, 2010 at 12:20 am

Good question. I’m not sure.

• nbloomf  On November 9, 2010 at 12:51 am

Okay- I think it is fixed now. I’m not sure where the abelian assumption came from.

Thanks for the tip!

• mcoulont  On November 9, 2010 at 6:20 am

At the end, n3(G)=4 forces |N|=6, no ?

• nbloomf  On November 9, 2010 at 11:30 am

You’re right.

• nbloomf  On November 9, 2010 at 11:40 am

I think it is fixed now.

Thanks again!

• mcoulont  On November 9, 2010 at 11:59 am

You’re welcome.